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1. Introduction

Context: commaoi in by-catch
In the Morth-East Atlanti , commaon dolphin {Delphinus de 1758} is a small oceanic
dolphin accidentally caug rious fisheries {Taylor etal., 2022 ~the 1990s, an increasing
number of common dolpl e been found stranded on the At aboard every year. In the
European countries, Frar . the highest record of commor ins stranded on beaches
{Rouby, 2022). This last 1 , the mean of stranded dolphins p sabout 1250 {Dars et al.,
2021). The stranded dolf at could be necropsied by the Fr randing Network usually
had their stomach full, ind that they were feeding at the time ‘h (ICES, 2021), and bore
fish net marks. The caus th is by-catch, the incidental anc tentional capture of non-

target species in fishing g

AU Al D YEdl | rEiuel B odl., SULAY, FELUEL ©Ldl., SULL ) B ZUL S, I.I.IJr|.|'|.EI B T ﬂﬂ}-’s 1n e nﬂ.}-’ or
Biscay (BoB), observers on fishing fleets revealed 19 by-catch events involving a total of 63
commaon dolphins. Raised to the total effort of all fleets reporting common dolphins by-catches, it
led to an estimate of 8904 common dolphins byoaught (ICES, 2021). Deterministic projections
from demographic model of population dynamics have suggested the population would be reduced
to 20% of its current size in 30 yvears and be extinct in 100 years (Mannoccietal, 2014). The main
part of the common dolphins stranding from by-catch come from the continental shelf of the BoB
and correlations have been demonstrated between fishing activities {French gillnetters, especially
those targeting high predators, 5panish bottom trawlers, Danish sennes, etc.} and by-catch (Peltier
etal., 2019; Dars et al., 2021; Peltier et al., 2021).

In July 2020, the European Commission started an infringement procedure against three member
states, including France, for the non-implementation of a sirict protection system for common
dolphins, as legally required under the provisions of the “Habitats® Directive (European
Commission, 2020). On the 20" march 2023, the state council of France issued an opinion asking
the French Government to implement measures within & months to reduce the number of small
cetaceans that are by-caught by fishing vessels flying the French flag in the BoB.

At the request of the Ministry for the 5ea and the Ministry for Ecological Transition, the Office
Frangais de la Biodiversite (OFB), lfremer, La Rochelle University and the CNES signed a
declaration of intent to form a partmership in December 2020 to increase knowledge and propose
remedial solutions. The Delmoges project follows on from this declaration and proposes to: i)
produce new ecological and fisheries knowledge to improve understanding of the determinants of
by-catch, ii) develop a range of scenarios to reduce by-catch and iii) assess these scenarios with
their socio-economic and territorial consequences {Delmoges, 2021). The first purpose of this
project focuses on dolphins distribution modelling to compare with fisheries effort and the
production of risk maps to improve management. Our study focuses on modelling the dolphins’
prey distribution to bring information better understand the impact of trophic interactions on the
dolphin distribution.



Prey/predator rel ip: small pelagic fishes and dolg ‘the BoB

Prey and predator distrib nfluence each other. Cuantifying le and valence of spatial
prey-predator correlation: dal in trophic ecology {Lambert 2019). Common dol phins
are oppormnistic feeders «l primaril v on small epipelagic ler 20 cm (Lahaye et al,
2005; Pusineri et al., 200 nier et al., 2008; Spitz et al., 20 tbert et al., 2019). It was
suggested that there is a« on between energy density of pre lolphins diet {Vurphy et
al., 2013). In the BoB, ¢ . dolphins consume mostly fat, i etic, fish (Lahave et al,
2005). Sardine seems to k ¥minant prey in weight in the com lphin diet in summer, fall
and winter while horse m is absent in summer and the quar md during spring and fall
was significantly higher f wer {Meynier et al., 2008). In co nchovy proportion in diet

anchovy and horse mackerel from the dolphin dail v food intake was respectively 43%, 21% and 5%
(e ynier etal., 2008).

This haven’t been do vet in the BoB but a model was developed for common dolphins in Greeks
waters including the effect of the probability of the presence of sardine (Giannoulaki et al., 2017).
In this model, the sardine distribution was correlated positively with the common dolphin
estimation. 50 modelling the distribution of the main prey of common dolphin, such as sardine,
anchovies and horse mackerel (Lahaye etal., 2005; Meynier et al., 2008; Marcalo etal,, 2018) can
inform on the dolphin distribution.

Sardine, anchovy and their environment

In the Bay of Biscay, European sardine (Sarding pilc hardus) and anchovy (Engraulis enc rasicolus)
(Whitehead, 1985; Coombs et al., 2006) (5 A is the abbreviation for Sardine and Anchovy here after)
are hypothesised o be one of the main prey for common dolphin {Pusineri et al., 2007, Meynier et
al, 2008). 5A live primarily in continental shelf waters (Fréon and Misund, 1999; Fréon et al,
2005; Petitgas et al., 2010). In the BoB, European sardine, or pilchard, lives during the day in dense
schools near the seabed close to the coast, and sometimes near sea surface offshore (Doray et al,
2018a). Common anchovy is found in less dense schools near the seabed mainly in coastal areas
and sometimes near sea surface in the BoB during daytime (Petitgas et al., 2000; Doray et al,
20118a). 5A feed mainly on zooplankton {Chapuisetal ., 2021; Modrak et al., 2022). They playa key
ecological role in the coastal ecosystem, transferring plankton energy to high trophic levels {Fréon
etal., 2005).

54 population dynamic is very dependent of the environment (Coombs et al., 2006; Doray et al.,
2018a; Erauskin-Extramiana et al., 2019; Schickele et al., 2020; Fernandez-Corredor et al., 2021).
54 seem o0 be influenced by the local hydrological conditions of the Bay (Doray et al., 2018a).
Studies showed the importance of river flows, bottom temperature, chlorophyll-a and
mesozooplankton biomass in the dynamics of the Bay of Biscay pelagic ecosystem {Doray et al.,



2018b; Grandremy et al. The distribution of mesozoopla 1as been highlighted as a

factor in the spatial organ f SA (Petitgas et al., 2006; Grand al., 2022).
Species distributi ‘elling and data integration

Mowadays, species distri nodels (SDM) are widely used Wy for management and
conservation purposes i trial, marine and freshwater are isan and Thuiller, 2005;
Phillips etal., 20046; Elith athwiclk, 2(04; Pennino et al., 20! in Gonzalez et al ., 2021).
The growing interest in ems from their ability to predict iribution of species over
large areas based on ha =cription data (eg. environmer prey data) and species
oocurrence records (Giar i et al, 2017; Pennino et al., 21 nderstanding the relative
contribution of spatial an yal components in the distributic :h has direct implications

LLLLLLE cdLILRLL | LB LLLL S L EL ., SWRS L WYL LSt U d P UL LS LiF ﬂﬂﬂl}l’ﬂ' El.‘l:l-&_'g.-'S[El‘l‘lll.’ SUH’E}-’
data {Doray et al., 2018b) have become popular as they allow the construction of detailed maps of
species distribution and density (Conn et al., 2017; Isaac et al., 2020). These techniques have
already proven their effectiveness for several marine species as predicting cetacean distributions
(Giannoulaki et al., 2017} or SA distribution modelling {Andrews et al., 2020; Schickele et al.,
2020).

Data from scientific surveys are commonly vused in 5DM to understand the spatio-temporal
distribution of species. Data from ecosystemic surveys have the advantage of being derived from
controlled and repeated sampling schemes {Rufener, 2020). However, survey data have limitations:
they are expensive and collected over a limited spatial and temporal scales (Ruofener, 2020).
Commercial fishing data are therefore increasingly used to complement scientific survey data and
provide fine-scale information over the year to map the distribution of fish (Moriarty et al., 2020,
Rufener, 2020; Martin Gonzalez etal., 2021; Alglave etal,, 2023). But fishery-dependent data also
present some limits {Maunder et al., 2006) fishing declarations can be erroneous, Catch Per Unit
Effort {CPUEs) are not necessarily proportional to fish biomass, due to catchability or fishing
behavior issues. The combination of the different data sources presents several advantages and
disadvantages for modelling fish distribution {Martin Gonzalez et al., 2021). The first problem is
the diversity of methods used to collect data (Mbriarty etal., 2020). With the ex pansion of the types
and amount of biodiversity data collected, there is a need to find ways o combine these different
sources to provide consistent summaries of potential and realised distributions of species in space
and time (Isaac et al., 2020). Pinto et al. {2018} proposed a spatial model based on ocourrence
{presence/absence) by combining surveys and commercial fishing data. This is a simplification to
limit the e ffect of heterogeneity in fishing effort and catchability be tween different data sources and
allows all sampling methods to be considered equally informative about the presence/absence of the
species (Pinto etal., 2018; Martin Gonzalez etal., 2021},

Another issue are data derived from opportunistic sampling (e.g. tourist whale or bird watching,
fishing data), where ohservers tend to look for a specific specie in areas where they expect to find it
(Hefley and Hooten, 2016; Post van der Burg et al, 2020). These data are usually subject to
preferential sampling (Diggle et al., 2010; Pennino et al., 2019; Post van der Burg et al,, 2020,
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annual scales. The idea is to produce new ecological and fisheries knowledge to better understand
the determinants of incidental catches (Delmoges, 2021). The 5DM outputs should ultimately be
used as covariate to model the dynamics of common delphin distributions, taking into account
physical and trophic conditions {Delmoges, 2021).

Chemper, (2021} developed an integrated modelling framework described by Alglave etal., (2022)
map the distribution of sardine in the BoB, and investigate their preferential sampling defined by
Diggle etal., {2010} by French commercial fishing fleets.

In this master thesis, we rely on and significantly extend the framework developed by Alglave et al.,
(2022} and Cuemper et al {2021}).

Chemper (2021) showed that taking into account preferential sampling in the inference had litile
influence on the inferred distribution of sardine presence {(Quemper, 2021). We then analyzed
commercial fisheries data as presence-only data with a Poisson point process and included a shared
common Gaussian random field with survey data. This approach avoided biased inference when
data were collected under preferential sampling (Diggle etal., 2010).

Additionally, the inclusion of environmental covariates in Quemper et al (2021)s model did not
reveal any significant effects of the covariates on the probability of sardine presence in the Bay of
Biscay. Moreover, the SACROIS fishing data were subject to measurement error, due to the
homogeneous reallocation of catches along the fishing path, which smooths and attenuates the
signal, blurring correlations with environmental covariates {Quemper, 2021). Then our model only
included the distance to the coast as environmental covariate, o explain and/or predict the
distribution of 5A in the BoB. The distance of commercial fishing operations to the coast was
included in our model to take into account factors that explain the distribution of fishing operations,
e.g. fuel coast

Finally, in Quemper et al {2021} both fishery and survey data were integrated as presence absence
processes, which did not properly account for the fishing process and reporting {only positive catch
of marketable fish are reported), and did not allow for the use of accurate fish biomass (density)



estimates provided by scientific surveys. Cur model extended Cluemper’s (2021} approach by
maodelling three processes relying on three types of data within a single hierarchical framework:
presence-absence from the survey, intensity (biomass) from the survey and presence-only from the
commercial data.

2. Materials and Methods

Study area

The study zone is the Bay of Biscay (BoB), an open oceanic bay located in the Northeast of the
Atlantic Ocean between 48”3 and 43°5'Nand 8 and 3"W (Lassalle et al., 2013). It covers an area of
approximately 225 MM km* (Persohn, 20049). The continental shelf along the Spanish coast is
narrow {~ 30 km) and it widens nothward along the French coast, reaching 180 km off Brittany
{Costova et al., 2015). The limit of the plateau corresponds to the isobath of 200 m {Persohn, 20049).

The water masses in the upper lavers (from 100 to 800 m de pth) have temperature varying be tween
10,5 and 12 °C and salinity from 33.45 to 35.75 ps.u (Koutsikopoulos and Cann, 1996), with sea
surface temperature and salinity higher in the south of the Bay of Biscay (Persohn, 2009). Along the
French continental shelf, freshwater input induces density gradients that favour a poleward
circulation and carries essential minerals for the ecosystem chain. The Loire and Gironde rivers
account for 73% of freshwater inputs into the Bay of Biscay (Persohn, 2009, Costova et al., 2013).

This study is limited to the French continental shelf of the BoB {Figure 1). This area corresponds to
the area sampled by the PELGAS scientific survey: It includes the continental shelf located between
the Pointe du Raz and the Gouf de Capbreton.
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Figure 1: Bay of Biscay and study area



Survey data

Data from two integratec fic surveys of the Bay of Bisca | pelagic ecosystem were
used in this smdy: the PEI urvey in May and JUVENA in Se r. One of the goal of these
sUrveys is to assess the a ce, biomass, and age and size str of the BoB small pelagic
fish community using an ~trawl methodology {Doray et al. The PELGAS survey has
been conducted by the | Tangais de recherche pour 'exp i de la mer (Ifremer), in
collaboration with La R University and the Centre natio la recherche scientifique
(CNRS) since 2004 over nch shelf of the BoB (Doray et a tb). The JUVENA survey
has been taking place sin . It has a focus on anchovy sub p m and covers the Spanish
and French coasts (Boyr: 2020). Only samples located in dy area were used in the
anal ysis (i.e. samples loca 1 BoB continental shel ) {Figure

transmitted in seawater as ultrasonic pulses, from the vessel hull to the seabed. In the presence of
fish, a part of the acoustic signal is backscattered and recorded by the echosounder. The majority of
pelagic fish being often out of reach of the sounder (in a laver of water between the surface and 10
meters of immersion) at night, acoustic surveys are carried out during daytime. Echo-integration
makes it possible to evaluate the biomass present in an area by integrating the acoustic energy
backscattered by all the fish targets insonified (Simmonds and Maclennan, 2007). These echo-
integrations are carried out on the scale of an EDSU (Elementary Distance Sampling Unit), which
corresponds to one nautical mile of acoustic linear sampling (Doray et al,, 2018b). The acoustic
densities, resulting from echo-integration, were backscattered by an assemblage of species. To
determine the species and size composition of each EDSLU, pelagic trawls are carried out regularly
{2 to 3 trawls per day) and the species and size composition of the trawls are reallocated to the
echo-integrals by EDSU {Doray et al,, 2021).



Figure 2: Spatial distribution of presence/absence per survey (JLVENA/PELGAS)
and species {anchovy-ENGR-ENC / sardine-SARD-PIL) of all the year 2009 - 2022

Because PELGAS and JUVENA are scientific survey, they benefit from a standardized sampling
plan. We then considered they provided an unbiased information on the spatio-temporal distribution
of the species biomass. Then for PELGAS and JUVENA data on absence/presence and biomass (in
tons) per EDS U were used in the model from 2009 o 2022 { Appendix 1).

Commercial fishing data

4 rdine and anchovy fisheri VIV 4

The fishing fleet targeting small pelagics in the Bay of Biscay brings together vessels with a variety
of profiles, both in terms of technical characteristics (size, gear used, etc.) and their portfolio of
targeted species or fishing grounds (Lahellec, 2020}, This fleet is classically segmented into two
groups. pelagic purse seiners and pelagic trawlers. They target the shools they want to fish using
sonar (Lahellec, 2020). If there is no fishing, it does not mean that there are no fish, but rather that
there is a problem with the gear, or that the fish were not big enough and were thrown back.
Additionally, the fisheries is driven by the market, because fisheries often have contracts with
canneries that specify the size of fish and the tonnage they must catch. So we decided to not use the



absence data, but only p data. Fishery catches reflects th a small part of the ol
population. And the fishe I't have to declare discards in the sardines because ther is
no TAC for the stock.

Those issues specific to B pelagic fisheries adds to cla: PUE biases. Due to the
aggregation behaviour o ic fish, pelagic CPUEs remain ely stable whatever the
underlying biomass level enomenon is also known as CPUI -stability) {Pitcher, 1993).
Moreover, fishery-de penc a can confound changes in fishir vior with changes in fish
abundance. This is beca | behave in more or less grega ays, during spawning or
feeding phases for examp mme species travel in large, dense s. Itis also because of the
preferential sampling (D al., 2010; Pennino et al., 2019; i der Burg et al, 2020;
Alglave et al., 2023). Fisl rations are hence only performed s where fishermen expect
tm Fimd tha seoei e AF e Dirhimn ahenmen data haime med v oamd CIMIE - haimn mer
fishery.

The Vessel Monitoring System (VMS) monitors and registers with high accuracy (but low
frequency) the geographical locations at sea of equipped fishing vessels (Phillip and Eobert, 19948).
VIS monitoring is mandatory for professional fishing vessels over 12 meters, flying the flag of
Member States of the European Union, since January 1, 2012, VIVE data allow the monitoring of
fishing activity at a very fine spatio-temporal resolution {Alglave et al., 2022). These spatialized
informations are coupled with landing data {logbooks) according to the methodolog v described by
Hintzen et al. (2012). It estimates georeferenced catches per species by reassigning landings to the
vesse| positions meeting a set of conditions. The VM5 positions are hence filtered o keep only the
one more likely corresponding to fishing activity {mean speed inferior to 4.5 knots- algorithm
AlgoPesca developed by Ifremer). The reassignment is uniform, this method cannot provide
information on irregular catches. This study used the output of the algorithm S ACROIS developed
by the Ifremer based on this methodology:

Only three seasons (spring, summer, fall} were defined in the model. To choose which month will
be put in each season, we used the surveys as reference. PELGAS was mostly conducted in May,
but started sometimes in April. In the study, spring hence corresponded to the months of May and
April. The main Month for JUVENA is September but it can finish in October. We decided to put in
fall the months of September and October. For summer, we just took the 3 months between the
spring and fall months defined before: June, July and August, which also represented the months
with highest commercial fisheries data.

Diata filtering and Preliminary analysis

Commercial data include all sardine and anchovy landings declared by fishermen. An exploratory
analysis of catches, effort and CPUE was carried out over the period 2009 — 2022, We produced



mean maps per yvear or month and gear, effort and Catch Per Unit Effort {CPUE) and compared with
known information. A few suspicious data points have comforted the choice made in the work of
Cuemper, (2021} to keep only gears known to target sardines. In the study of Cluemper, {2021}, only
the fleets that have more than one per cent of their captures constituted by sardines were kept. In
2021, about 86.7% of French sardine catches were made by purse-seiners while the remaining 13%
was reported by pelagic pair-trawlers (ICES, 2022). Pelagic pair trawls {(FIM) and purse seines
(P5) have hence been retained for analysis (Figure 3, Appendix 1).
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Figure 3: Spatial distribution of presence comme reial data per fishing fleet and per season
over the period 2009 — 2022

To confirm the absence of correlation between CPUE from commercial fleets and indices of
abundance as biomass (Rufener, 2020), the correlation between CPUE and survey biomass was first
explored. The commercial data of May and September were extracted and compared respectively
with PELGAS and JUVENA data. All data were averaged on the same spatial grid to allow for their
comparison. Fishing and survey data were merged by grid cell and vear, and biomass vs CPUE
scatter plots were produced.

Hierarchical Modelling

S pat | resolution of i ]

Concerming the temporal resolubion of the model vears and seasons were defined as integers:
{2000, 20010, ___, 2022}, k =1 for spring, k = 2 for summer, k = 3 for fall.



To define the spatial resolution of the model, we adopted the SPDE (Stochastic Partial Differential
Equation) spatial framework which represents continuous Gaussian fields as a discrete Gaussian
Markov random field {Lindgren, 2012). The number of knots determines the spatial resolution of
the model (ie resolution of the inference of the random fields). We used a k-means algorithm
applied on samples locations to identify the location of knots (Figure 3). The SPDE approximation
imvolves generating a triangulated mesh that has a vertex of a triangle at each knot using R-INLA
{Lindgren, 2012)). Different mesh designs were compared visually and in terms of computing time.
A single mesh has been kept for all the models. The mesh design includes an outer extension to
avoid a “boundary effect” and regularly shaped triang les, both in the inner and outer extensions and
at the border between the two extensions (Finto et al., 2018). Then spatial variables at location were
interpolated from knots to extrapolation grid using this triangulated mesh. (Figure 4, Figure 5)
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Frgure 4: Extrapolation grid of the siudy area (1 cell = 2.5 x 2.5 lm)
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Figure 5: Triangulated mesh of the study area

The SPDE approach allows a Gaussian field to be approximated by a Gauss-Markov field {when the
Caussian field admits a Matérn function as its correlation function). This is achieved by reducing
the spatial resolution at which the spatial structure of the latent field is estimated by modelling it on
the scale of a sparse triangular mesh {a triangle has three nodes). At node level, the latent field is
maodelled explicitly. The finer the mesh resolution, the more accurate the approximation but the
larger the number of nodes to be estimated and the longer the calculation time. Between the nodes,
the value of the latent field will be a linear interpolation of the value of the latent field at each
vertex of the riangle in which the observation is located. 5o the value of the latent field at an
observation point depends not just on the nearest node, but on the 3 vertices of the triangle in which
the ohservation lies, weighted by the distance between the observation and the corresponding node.
More details are available in Rue etal. (2009), Moraga (2020) or Krainski etal. (2021).

O o0 P 1 ikelihood

Sardines and anchovy data were analysed independently using the same statistical approach. The
hierarchical model consists in 3 parts: observations, latent processes and hyper-parameters. The
observation models assume different likelihoods {Poisson Point Process / LogNormal / Binomial)
depending on the nature of data {presence only fisheries data / survey biomass | survey presence-
absence respectively). These observations are linked in the hierarchical model through latent
processes {using Gaussian fields), which account for spatial and temporal dependencies of
ecological interest. Finally, both observation and latent processes depend on higher-level parameters
called hyper-parameters: variances and spatial ranges in the present case.

The model integrates different data sources in a way that retains the strengths of each (lsaac et al
20207). There are 3 sources of data and each type of observation have a different likelihood that
accounts for their idiosyncrasies.
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probability u-f presence of fish and n equals 1.

Let y(s,, 1, k | represents the ith observed intensity of presence when zis 1. v follows a Log Mormal
distribution with parameter g and o. These are related to the mathematical mean expectation and
standard deviation of the variable’s natural logarithm.

Let 5,,...,5, represent the ocourrence of 5 A as seen by commercial fishing. 5,,...,5, follows a Poisson
point process (PPF) with parameter 4 (Hefley and Hooten, 2016; Moreira et al., 2023). A is the
intensity of the counting process, which is derived from a (stochastic) Gaussian Process. Since the
PPP is a statistical distribution over a spatial domain, it allows to model points in geographical
space. In a homogenous PPE, it is assumed that points locations are independent from each other.
This assumption is usually not adequate for biological species and can be relaxed in inhomogeneous
FPE If the intensity parameter 7 is modelled with a Gaussian Process (on a log scale), the resulting
process is called a Cox process. The fishing data were there fore modelled by a Cox process (Opitz,

2016) written as:

Where Ase is the intensity of the counting process for location s, vear t, and season k.

Link functions and conditional expectations

For ohservation processes, the parameters defining the likelihood follow stochastic processes,
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For the presence/absence ss, the linear predictor is modelled * logit of the probability
specified as

.sugirlim,,_..,_*,h a® o Wals, k) o+ Elfs,t,k) e + 2 F(C.(s,t, k)

o
S —_—

Interept ic Garsian field shoed Gousian field E',ITer:! environmeni] m'and:-bs

For the intensity proc the LogMormal distribution p trized  with parameters,

El(ln(y, o =m0+ and L'i:rr[ln[y,h_.._ ﬂ_.]]= -.E:f.p[cr *e:tp[.!h_ l.%_.+cr‘]. The
linear predictor is equal to
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And for the presence-only process, the intensity of the Cox process is defined as

.mgtf.,,_..,_*,}l = o'+ Wils,k) + &lsutk) + +2 F(C.(5,0, k)

[
'\-\__o-l'

Intercept secific Gmesan field S."i'.':‘.l'Eﬂ' -E'a..'smrr field :E'mrr E,ITer:! envirommeni] m'anmbs

o, o, @ are intercepts that represent the average effect in space and time (season and vear) for the
presence absence, the intensity and the presence only processes, respectively. Vik) 1z a ssasonal
gpecific fixed effect Wnis k), Wp(s k), Whi(s k) are spatial-seasonal terms that represent the
unmeasiured seasonal spatial variation in the presence/absence, the intensity and the presence only
processes respectively. They are latent processes and are modelled using the S5PDE appmach
{Lindgren et al., 2011). The effect is a zero-mean Gaussian random field whose covariance matrix
follows a Matérn correlation function characterised by a range parameter r- the distance at which
the correlation between two points is equal to 0.1, and a variance parameter o°. This field reflects
the 5 A distribution pattern for a season. It would give the preferential seasonal distribution given by
this ohservation process.

Ly is the spatio-temporal random effect that integrates seasons and years. It is a Gaussian random
field shared between the 3 processes. In other words, each observation, whether absence/ presence,
positive biomass, or commercial fishing positive operation, is the realization of a stochastic process
governed in part by this common latent process. The associated temporal correlation is modelled
using an autoregressive process of order 1 parametrised by a parameter a. Finally C represents the
environmental co-variables and y is a fixed effect parameter which captures the species-habitat
relationship with the function fn modelling the species-habitat relationship. Here bathymetry,
distance to coast, 55T and Chl-a were selected as covariates to model species habitats.

The season effect Vi is modelled as an intercept. In other words, it is an average pattern associated
to the season which is added o o, a¥, o* interce pis. It represents the difference between the spring,
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the summer and the autumn cepts. This seasonal effect may be the environment, but also

differences between sam om one season o the next So whility effect that is not
represented anywhere el: e model would be confounded - + season effect. Thus the
season effect should not n ily be interpreted as a biological e

The species-habitat relatic T in our model de pends on space, ul season, as we postulate
non-stationarity of the en =ntal effects. The intensity of the ship, included in fn, may
change over the seasons. words, the process linking the di: n of fish and their habitat
is the same, but the paran 1ay change over the seasons, part in relation to the species
biological cycle. Namely, *ments for re production are not ¢ » as those for growth and
feeding, and fish move o timal habitats along their life oyl

FPriors

We used the default priors for the hyper-parameters as implemented in B-INLA. Defining adequate
default priors for hyper-parameters currently constitute an active area of research for the R-INLA
team (Finto et al., 2018). The shared latent field parameters specify that across time, the process
evolves according to an auto-regressive AR(1) process. The prior for the autocorrelation parameter
a is defined by a Penalised Complexity or PC prior for the autocorrelation parameter a where a=1in
the base model. Here we assume Fla=0)=09 (Krainski et al., 2021). For the hyper-parameters
governing the Matern covariance function, PC priors were also used: the prior for the sill variance
was set so that values greater than a factor of 5 had a probability of 0.01. The range indicates the
minimum value at which we have spatial information. As the PELGAS data maximum spatial
resolution was 1 nautical mile {1.852 km) the range was set to; value of 1.8/73, i.e. 0.6 km.

For the fixed effect, we split in 2 parts. For slope parameters (corresponding to the covariates) we
put a prior such that the effect is between 0.2 (1/5) and 5 times the value of the corresponding
intercept. We are working on a log scale so the mean is 0 and the precision {inverse of the variance )

is l.f[k'g'zi] . For the season intercepts, we put a prior for Log Normal/PPP intercept parameters

such that the effect is between 0.1 {1/10) and 10 for Binomial intercept parameters, insuring that the
mean presence probability is between 0.1 and 0.9 with the possibility to have more extreme values.

50 the prior have a mean of b and a precision of 1x[mg'2ﬂ] . These priors were weakly-

informative in that they are putting some constraints on the parameter space and favoring plausible
regions a priori. The shape of the chosen prior are depicted in the Appendix 2.

Inference ool INLA

The inference was performed in a Bayesian framework using the B-INLA tool. Rue et al., {2009)
have developed the integrated nested Laplace approximation (INLA) to approximate the joint
posterior distribution as an alternative to traditional Markov chain Monte Carlo methods {Moraga,
20207, INLA allows to perform approximate Bayesian inference in latent Gaussian models such as
generalized linear mixed models and spatial and spatio-tem poral models (Moraga, 2020). The aim
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of the INL A methodolog Jproximate the posterior marginal maodel effects and hyper-

parameters. This is achi v exploiting the computational ies of Gaussian Markov
random fields and the L approximation for multidimensic egration {Krainski et al
2021).

E-INL A combines the in by the integrated nested Laplac ximation with the SPDE
{Stochastic Partial Differe [uations} approach.

Convergen  sment

For each model in thi: the Kullback-Leibler diverger the posterior marginal
distributions of the inte md the Gaussian field paramen e checked to assess the
goodness of fit. The K -Leibler divergence (kld) descri difference between the

well fitted, the kld vector is composed entirely of zeroes for the fixed effect.

The posterior marginal distribution of a parameter should be similar to a Gaussian distribution if the
maodel fitis good.

The two goodness of fit indices provided by the INLA were also checked (see details in Appendix
3).

Upon convergence, the model goodness of fit was finall v checked by mapping spatialized deviance
residuals. Deviance residuals can be interpreted as the difference between your model’s fit and the
fit of an ideal model (Kundel, 2017). Deviance is a measure of goodness of fit in a similar way to
the residual sum of squares (Rundel, 2017). Deviance residuals maps were checked for non-random
patterns that may betray the presence of an effect that has not been taken into account, and that has
significantly influenced the model’s deviance residuals {Appendix 4).

Mode| selection

The criterion use to compare models was the Watanabe-Akaike information criterion (WAIC).
WAIC is a fully Bayesian approach for estimating the out-of-sample expectation, starting with the
computed log point wise posterior predictive density and then adding a correction for effective
number of parameters to adjust for overfitting (Gelman et al., 2014).

Niodelling strategy

The first model created was the Hurdle model on PELGAS data. A hurdle model is a class of
stafistical models where a random variable is modelled using two parts: the firstis the probability of
attaining value 0, and the second part models the intensity of the non-zero values. This model was
performed using a Binomial likelihood for the presence/absence and a LogNormal for the intensity

of presence. This model was a first approach to an integrated model for one season, fitted on several
ears.
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latent field parameters should have been modelled as an au to-reg ressive AR(1) process representing
seas0N-t0-5eas0on autocorrel ation.

Unexpected incom patibility with R-INLA prevented the use of super computers to fit the complete
maodel over 14 vears. Personal computers only allowed to fit the complete model for a single year A
total of 14 annual models (with t set to 1) with 3 seasons were then fitted for sardine. The specific
latent fields were hence independent between seasons and wears for the 14 different models. The
shared latent field parameters were modelled as an auto-re gressive AR{1) process between seasons.
All together, the outputs of the 14 annual models approximated the results of a single model fitted
over 14 yearsat once. Fitting annual models however implied to assume that the sardine distribution
was not stationary between years.

Due to time constraint, models could not be fitted on anchovy data.

Db rived .

To summarise the information prodived by the model, we have calculated the average shared
Gaussian random field (SGF) and its inter-annual variability. For each grid cell and season, average
and standard deviation (5D of 5GF values and prediction errors were calculated.

Our model produces 3 types of predictions: the probability of presence n, the biomass intensity p
and the catches fisheries densities & Predictions were obtained in each grid cell, season and year as
the sum of an intercept and its variability Vk, a covariate effect, a process specific Gaussian
random field and a shared Gaussian random field. Then, average and 50 maps of predictions and
predictions errors have been derived as for the SGF.

Average maps were analysed to identify mean patterns in 5GE, predictions, and errors, 5D maps
were analysed to assess the inter-annual variability of each quantity in each grid cell.
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same pattern for each gea te |y
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All gear together, there was no significant correlation between anchovy CPUE and the FELGAS
data {Pearson correlation coefficient = 0,24). However a significant positive correlation (Pearson
correlation coefficient = 0,71) was found between purse seiners CPUEs and PELGAS survey
biomass in May for of anchovy (Figure 7). The Pearson correlation coefficient associated was 0,71.
There was also no significant correlation between anchovy CPUE and the JUVENA data (Pearson
correlation coefficient = — 0,24} (Fgure 8). As for sardine, most data were zeroes, with few large
survey biomass values associated with low CFUEs, and high CPUEs associated with low survey
biomass.

For the anchovy, the commercial fishing data were used as presence-only data like for the sardine.
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Multi-season mod elling

Convergence of models

The indicator of convergence was true for all the models. The number of checks not passed during
the posterior mode optimization for the hyper-parameters was small and did not exceed 0,5 % of the
total effective parameters { Appendix 6). For all the fixed effect in the models, the kld was close to
0, suggesting no convergence issue { Appendix 6) The models were run with and without the
covariate (distance from the coast). There were some differences in the intercept { Figure 9). The
difference in WAIC between models with and without covariate varied a lot across years
{appendix). For 7 wvears, the best model was the one with covariate and for 7 years the best model
was the one without covariate. Finally, we kept the covariate in the models and all the results in the
followed section were obtained with models including the distance to coast as covariate.

“tHaAIH I cHA 2 e 1zeH HOH e ity it0H 2Hd w2 1lean ti2=H HOH Frairg; cheipsds nmezegpl il iovsaisdik
- g
1 1]

HLLL A ] HLLL

(8
HLLL A

|
L]
K'rpar

aAr=

e e .b:l.' ey o) ok ] a':ll.' b:l L e |
LY REL bl LI

TiHaAIcH I CHd HH g HHITHD Fravirg; cheimds nmmmgel

a

HLLL o HLLL-o | HLLL

L 1 1 1
L] "T1 “="2 L] "T1 "1°7 wrem B
bLLE LLLE bl LE

Figure 3:  Evolution of the intercepis of the models with covariate and models without covariate over
the series (spring m green, summer m blue and fall in red)

Shared Gaussian Random Field

The shared Gaussian random field (5GF) integrated information from all three likelihood processes.
[t represents the common spatial-temporal variability of the distribution of the sardine in the BoB
that was not explain by the other effects. The SGF compiles all the information provided by all the
different types of data available in a single map per season.
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The posterior estimates of the common spatial random effect revealed a similar, globally coastal
distribution for sardine in all seasons (Figure 10). Fish concentrations were found between the
Gironde and the Loire estuaries, and in South West Brittany. Higher fish densities were ohserved in
summer then spring and fall. The inter-annual variability followed a positive South-East to North-
West gradient in all seasons. The average estimation error displayed an offshore-inshore gradient
with higher error values in summer and fall offshore {Figure 10).
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Figure 10: Average posierior mean, standard deviation and average error of the commaon spatial
randam effect for all the years in logarithm scale

Even if the average SGF did not vary much across seasons, we have identified 3 vears with inter-

annual and seasonal variability: 2013, 2017 and 2022 (Figure 11). Year 2015 was characterised by
the presence of a sardine hotspot near the shelf break in N'W BoB in spring and summer (Figure 11).
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Fish density globally decreased from spring to fall. The disappearance of a fish hotspot located in
Southern BoB from spring to fall suggested a northward migration. Conversely, a similar southern
fish conce ntration appeared in fall in 2017 suggesting a southward migration. Beside this, year 2017
GHF map was similar to the average map. Contrary to other years, fish seemed to concentrate from
spring to fall in 2022, The estimation error was lower in spring (2015, 2022) and higher in summer,
with a negative offshore-inshore gradient. This gradient was particularly marked in 2017, with the
lowest estimation errors near the coast, and highest offshore.
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Figure 11: Posterior mean and average error of the commeon spatial random e ffect for 2015, 2017,
2022

In addibon to mier-season vanabihty SGF displayed lage mterammal vanability withm each
season (Figwe 12) thooughout the BoB.  Despite a common coastal pattern, the intensity of
presence varied from year to vear (Figure 12). No clear rend was visible, except a slight overall
decrease of S5GF intensity in autumn since 2018 (Figure 12).
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Predictions of probability of sardi

The predictions associated to the Binomial likelihood represent the probability of presence of
sardines. They are obtained by summing the specific Gaussian random field, shared Gaussian
random field, season intercept and covariate intercept. The specific Gaussian random field of the
presence is only informed by the survey so it is equal o zero in summer (no survey).

In spring, sardines were found on average in the coastal strip from the south to Belle Ile. The
distribution was patchy, with small clusters of dense sardine schools (Figure 13). Small patches of
high temporal variability were spread over the whole area. Average prediction error was minimal in
areas of high probability of presence and along the survey acoustic transects.
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Figure 13: Average probability, sandand deviation and average error of sandine presence for
all the year {awg_pred_pres correspond to the average prediction of probabiliy of presence)

(Appendix 8)
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Predictions of sardine bi —

The predictions associated to the LogMNormal likelihood represent the intensity / biomass of
sardines, estimated in areas where the probability of presence equals one. Predictions are obtained
by summing the specific Gaussian random field, shared Gaussian random field, season intercept and

covariate intercept.
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as the prediction is only
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The overall patterns were the same as for the probability of presence, but the inter-annual variability
was more patchy in spring and autumn (Figure 14). The sardine distribution was however more
coastal in autumn, suggesting that denser shoals were found on average near the coast, and less
dense school further offshore. Average predictions emors were lower in areas of high density and

along acoustic transects.
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Figure 14: Prediction, standard deviation and average error of sardine intensity for all the year in
logarithm scale (owg_pred _int correspond (o the average prediction of biomass intensity ) (Appendix
3

The prediction associated to the Poisson point process likelihood re presents the density of positive
catches by commercial fishermen. Predictions are obtained by summing the specific Gaussian
random field, shared Gaussian random field, season intercept and covariate intercept. The specific
Csaussian random fields were estimated for the 3 seasons, as fisheries ocourred during the 3 periods.



The same average spatial pattern was seen for fishing activity between the 3 seasons (Figure 13).
Sardine fishery was more active in a coastal area from the Gironde to Belle lle and in South-West
Brittany. Fishing intensity was the lowestin spring (early season), highest in summer and lowest in
aummn. Awerage prediction errors showed a negative offshore-inshore gradient and were higher
summer and lower in auumn.
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Figure 15: Prediction, standard dewviation and average error of sardine fishery intensity for all the
vear in logarithm scale {avg_pred fish_int correspond to the average prediction of fishery intensity)
(Appendix 10)
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4. Discussion

In this work, we have dex a modelling framework for comb ta from scientific surveys
and commercial fishing, | he presence and density of small fishes, as well as fishery
activity in the Bay of Bi: seasonal and annual scales. The vas based on the work of
Chemper (2021}, which at mapping the probability of s wesence at monthly and
annual scales, and assess wry preferential sampling. As () (2021} did not find any
preferential sampling, an «l that fishing data were to scarc ke reliable predictions in
winter, we focused on: i) ¢ fish density in addition to pres wence, for seasons where
encugh data were availa ring, summer and autumn), and eloping a more realistic
representation of the pela ing process (presence only instea =sence/absence data). Cur
maodel integrated three | s and their associated likelihoo considered the presence-
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that integrated the variability from all data sources. The model has been run for 3 seasons from
2009 to 2022, each vear independently. Model predictions provided for the first ime a quantitative
description of the seasonal spatial dynamics of the sardine and its associated fisheries in the BoB.
Sardine core distribution areas were inshore, from the Gironde river mouth to South-West Britany.
Sardine distribution was on average more widespread and patchy in spring. Fish appeared to
concentrate in their coastal core distribution areas in summer, and spread towards offshor areas in
aummn, though being less dispersed than in spring. The inter-annual variability of the sardine
distribution was the highest in spring and autumn. Summer predictions were however less reliable,
as no survey data were available for this season. Mbdel outputs confirmed that sardine fisheries
essentially operated in fish coastal core distribution areas, with a peak activity in summer, medium
and low activity in autumn and spring, respectively.

An integrated modelling framework to infer spatio-temporal distribution of small
pelagic fish abundance
A spatio-tem poral model to account for seasonal and inter-annual variations in small

pelagic fish

Our new modelling approach estimates annual, seasonal variations in small pelagic spatial
distribution by including both survey and fisheries data. It implied that the distribution of small
pelagic fish varied over seasons and years, which is reasonable from a biological point of view, in
the context of migratory, short-lived pelagic species exploiting the dynamic biotope of the Bay of
Biscay. In fact, habitats occupied by sardines and anchovies for feeding are different from those for
reproduction in the BoB (Petitgas, 2010; Politikos et al., 2015; Massé et al,, 2018). The anchovies
spawning grounds are located in the southeast corner of Biscay, and the feeding grounds are in the
northern French shelf (Petitgas et al., 2010) The feeding migration ooours after spawning, mainly in
July and the comeback south occurs in December. The migration is assumed to follow a north-south
gradient in food and temperature {Petitgas, 2010; Politikos et al., 2015). There is also this type of
migration for sardines in the Bay of Biscay (Petitgas et al., 2010). In the literature, the main
environmental factors significantly related to the distribution of anchovy or sardine were
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model seasonal and interannual variations in spatiotemporal model. Previous authors have
included seasonal variation in isolation (Thorson et al., 2006; Grieve et al ., 20017} or included both
changes in spatial distribution among years and among seasons (Bourdaud et al., 2017; Kai et al
2017; Kanamori etal., 2009; Akia et al., 2021}. In our modelling approach we took the decision to
first select the nature of the data, i.e only presence for fishery data, presence/absence for survey data
and intensity of catch for survey data, to be able to use the most pertinent information from each
data source.

Finally, because most ontogenetic migration between spawning and feeding occours between
summer and end of fall’beginning of winter, it could be interesting to extend our approach by
integrating a winter season in the model using fishery data during winter and EVOHE {a winter
bottom trawl survey which can inform on 5 A presence )

An integrated hierarchical model including survey and fishe ry data

The model combined both survey and fishery data within a single statistical framework The
exploitation of 5A by commercial fleets is characterised by a very strong link between fishing
activity and market demand, resulting in strong seasonality, high size-based fish selectivity, and
fishing activity that is highly localised to the coast (Quemper, 2021; ICES, 2022). Caiches of SA by
commercial fishers provide information on the presence of marketable fish in geographically and
tem porall y restricted areas. In our study we showed that the absence of correlation be tween CPUEs
and survey biomass makes it impossible to use fishing data other than in terms of presence alone.
This is because fishermen target sardines and anchovies of a certain weight and size and in recent
years, high abundances have been concentrated at ages 0 and 1 {ICES, 2022). High biomasses
during the surveys generally correspond to young sardines that are of no interest to fishermen. The
correlation found between CPUEs of purse seiners and anchovy survey biomass in spring needs to
be put into perspective, as it represents very few dafa in a restricted geographic area on the French
Brittany coast {Duhamel et al., 2004). Previous stdies have combined survey and fishery CPUE.
Alglave et al. (2022; 2023) developed an integrated modelling framework to infer spatio-tem poml
distribution of fish abundance by combining commercial fishing data and scientific survey while
accounting for preferential in the distribution of fishing effort. However as already discussed by
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Chemper (2021}, applyin framework to 5 A might not imp nificantly the inference of

5A distribution due to tl e of the fishery Future work o us on understanding the
factors driving the marke e to canneries, fishing cost for« '} and fisherman behavior
to be able to better repres weferential sampling of this fisher
Ac counting variates

Only one covariate, the * o the coast, was considered i nodel. Mumerous studies
showed that the distributis nall Pelagic Fish (5PF) depends o nmental parameters such
as 55T, 555, Chl-a and b try. However, in the work of Cue W21}, the effects of these
covariates did not impror nodels predictive capacities. We T tested the effect of the
distance to shore, a cova at had not been vet tested, and « t as a proxy for riverine
influence from the fish p view, and for oil consumption, fr fisherman point of view.

Adrnmirnr  dm tha DHaar ~F - hathimmarmre amd Aicbamen Froee m+ arn merenl abad alaas -

of the distance to shore varied over the years. For 7 years on 14, the model with covariate was better
than without. In the first try without covariates, the deviance residual map showed a coast-offshore
gradient. Finally, adding the distance from the coast did not change the deviance residual maps. It is
difficult to conclude about the effect of this covariate. Investigating the effects of more biologically
structuring covariates {zooplankton preys ..} was beyvond the scope of this study and is left for
future ones: our model can incorporate covariates easily once these have been extracted and

prepared.

An important limit of our modelling framework is the absence of a single model for the entire
series. Due o unexpected computing power limitations, it was not possible to run a model including
all 14 wyears with 3 seasons on a personal computer. Fitting one model per year implied that the
vears were independent {althoug h within year variations were modelled). We had to make the strong
hypothesis that the intercepts and covariate effects associated with each process wemr non-
stationarity over time, which would not have been the case in a single model fitted over all years. In
the same way, specific random fields had o be treated as non stationary over time. They re presented
the seasonal variability of each process for one year, instead of the whole series.

A hierarchical model to allocate the different data information into shared terms
(representing the distribution of seasonal and inter-annual variations) and terms specific to
the different data sources

In this study, we wanted to predict the distribution of 5PF in summer, despite the absence of data
from scientific surveys. The information provided by fisheries occurrences could not be used alone,
because sampling does not cover the whole Bay of Biscay This is why we inferred a random shared
Caaussian field using the 3 data sources, which would vary over the seasons according to an auto-
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2018a) and sardine eggs (Huret et al., 2018; Petitgas et al., 2020).

However, some hotspots were only present for a few vears. In 2015 (Figure 11), an area of positive
values was clearly visible on the edge of the continental shelf between 46°N — 47°30°N. This area
was also described as a spawning zone {Bellier et al., 2007). There is also a zone in Cape Breton in
certain years (2012, 2014, 2015, 2017, Figure 12}, documented by (Petitgas et al., 2020) as an area
of high egg concentration in 2010. Sardine seemed to migrate North from spring to fall in certain
wears (2013, 2019), but no clear consistent migration pattern could be found in the S5GF resulis.

Even if the shared random fields provide very interesting information, it does not explain all the
total variance. Specific random fields hence explain a larger part of the variability of spatio-
tem poral distribution of SPF. Also, if a random Gaussian field represents variability, it does not
take into account the fixed effects of the model {interce pis and covariates). Predictions can only be
made at the scale of a process. The probability of presence prediction maps were hence very
different from the commeon random field distribution pattern. The predictions were driven by the
specific random field, which hasa larger range than the shared field. A comparison between the raw
data and the prediction maps showed the same distribution pattern. Our model therefore takes good
account of the quantity and quality of the survey data when making its estimates. The same is frue
for biomass predictions in the study area. As there is no scientific survey in summer, predicted
distribution pattern corresponds exactly to that of the shared random field, module intercepts.

The analysis of average prediction maps derived from our model provided for the first time a
quantitative description of sardine seasonal spatial dynamics in the BoB. If sardine core distribution
areas were consistently coastal areas from Gironde to Brittany, their distribution appeared to be on
average more widespread and patchyin spring. Our results suggest that sardine tend to concentrate
in their coastal core distribution areas in summer, and spread towards offshore areas in autumn,
though being less dispersed than in spring. Inter-annual variability was high at small scale over the
whole BoB in spring, at the periphery of core distribution areas in summer and inside and at the

30



periphery of sardine conc ns in autumn. Inter-annual variab ardine distribution hence
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Summer predictions wer rer less reliable than spring and ones, as no survey data
were available at this se: is also worth noting that the fal MNA survey has a coarser
resolution com pared to th t PELGAS survey (10 times less : ), as it must cover the off
the shelf areas of the Bol fition to shelf areas considered ir udy {Doray et al., 2021).
Differences in sampling £s between seasons may hence te to explain some inter-
seasonal differences in s atterns, at least at smaller acale irdine distributions more
patchy in spring com pares T SEASONS).

The specific field has on sitive effect on the predictions ¢ g activity {Figure 18). It
provides new informatic it hotspots of fishing activity, common field prevails

(2009, 2010, 2012, 2017).

Finally, the integration of commercial fishing data allows to supplement the information provided
by scientific data in very localised coastal areas (Cuemper, 2021). It also makes it possible o
provide information for periods when there are no surveys. Newvertheless, our results highlight
predictions are largely driven by survey data in the model, as surveys remain the most reliable and
spatially extended and homogeneous data. Acoustic surveys are therefore necessary for a full
understanding of the distribution of these species.

Further work would include to fit the model for other species, namely anchovy, and o integrate
other data sources informing on the winter situation.

The Delmoges project has hence conducted a pilot acoustic survey using the uncrewed survey
vehicle DriX in February 2023 that provided new quantitative information on small pelagic fish
distribution in the BoB in winter. The EVHOE bottom trawl scientific survey also takes place in the
BoB in November Data from this other scientific survey could provide useful information on
sardine distribution in early winter. The flexible structure of our model should allow for the
inclusion of those new data source to provide a better understanding of the distribution of small
pelagic fish in winter, at the peak dolphin by-catch season {Dars et al,, 2021). This would be
essential to map areas where 5PF and dolphins co-ocour, and assess if their co-occurrence increases
the risk of dolphin by-catch.

5. Conclusion

This work demonstrated the interest of integrating different data sources to map the presence and
density of a small pelagic fish, as well as fishing activity in the BoB at seasonal and annual scales.
The specificities of small pelagic fish fisheries (CPUE over-stability, seasonality, size-based
selectivity, market influence} required to develop a pelagic-specific 5DV Its use could provide
information about the distribution of 5PF during data poor period, within coastal areas where
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Appendix 1: Sardine model mput data
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Frgure 16: Spatial distribution of sardine presence/absence from PELGAS survey
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Figure 17: Spatial distribution of sardine presence/absence from JUVENA survey
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Figure 18: Spatial distribution of sardine biomass mtensity from PELGAS survey (in log scale )
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Frgure 19: Spatial distribution of sanrdine bromass mtensity from JUVENA survey (in log scale)
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Frgure 20 Spatial distribution of sardine presence commercial data (P5 and PTM) in spring
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Figure 21: Spatial distribution of sardine presence commercial data (P5 and PTM) in summer

42



rars s rreen-rade aonavd - drwc s Cafeods Gavrra - T FEC-e

- u

i L
. f H
LEY =
2 =
P '
Fi o z d
5 . : i I T
L L - o
. ] 5
| g - %,
w e
2 R - .
| s ! '\-.H_‘
'
4
wt L
1

-
)
. -I
5
.'\-. -t
i
L P

I.«.

"'..' r'-. Pl : 'lﬂl .."-'. "= ".." - "=

Frgure 22: Spatial distribution of sanrdine presence commercial data (P5 and FTM) m fall

Appendix 2: Prior: explanation and visualisation

Priors need to be specified in a Bayesian modelling framework. Priors can be constructively viewed
as regularization devices (Gelman and Shalizi, 2013): they put soft constraints on the parameter
space, and can help in obtaining better estimations (in a variance-bias tradeoff sense) esp. with
sparse data.

We aimed at using so-called weakly-informative priors {(Gelman et al., 2008), acknowledging that
there is no precise definiion of “weakly’. One important insight is that a prior that ‘looks’
uninformative {e.g. a uniform prior over a finite support) on a scale may not be “uniformative” on
another scale. The Figure 23 below illustrate this point with a prior on a logit scale commonly used
in logistic regression. A large scale parameter is used { 100) to translate naively an idea of vagueness
{the corresponding variance is 100°). However, this vagueness is actually very informative on the
natural scale of a probability once the inverse logit transform is applied (Figure 23, right panel).
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Figure 23: One million realization from a normal random varighle N (0, 100) represented
as histograms with 30 bins. Left: on a logit scale. Right: on a probability scale.




Changing the scale parameter to be informative and a small value of 1.5 results is a weakly-
informative prior on the probability scale (Figure 24).
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Figure 24: One million realization from a normal random variable N ['ﬂ' %] represenied as

histograms with 30 bins. Le ft: on a logit scale. Right: on a probability scale. Note the
resiricied range for the variable values on the logit scale compared (o Figure 23.

Similar reasoning was applied for priors 1o be specified on a logarithmic scale. Prior specifications
and choice were visualized to ensure that our choice were “reasonable’ in the sense of not putting
too much weight on implausible regions on the parameter space.

Appendix 3: Fit indices provided by INLA to check the converge nce

The first is a logical indicator indicating whether the model fit was successful or not. The second
component provides more specific information about the convergence of the mode-finding algorithm. It
indicates whether the optimization algorithm used to find the mode of the joint posterior distribution was
successful in converging to a valid solution. This number indicates the number of checks not passed
during the posterior mode optimization for the hyper-parameters. A value of 0 means that the posterior
made of the hyper-parameters passed all the internal checks. Small values are usually acce ptable, but not
always, and higher values indicate bad convergence during the mode-finding process. If the Hessian
mafrix is not positive-definite, 108K} is added to the indicator as this is a significant issue that would
require a rerun to locate the posterior mode.
45



Appendix 4: Grids maps of the deviance residual associated to each proce ss from the model in 2017
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Appendix 5: Maps of the bathymetry (right) and the distance from the coast (left) of the BoB

Appendix & Summary of the convergence assessment mdicators
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Appendix 7: Focuson 2017

The shared random field integrated information from all three likelihood processes. It re presents the
common spatial-temporal variability of the distribution of the sardine in the BoB that was not
explain by the other effects.

The posterior estimates of the common spatial random effect revealed a globally coastal distribution
for all the season (Figure 25). There was positive area between the Gironde estuary to south of
Brittany. The pattern was the same over the season but the intensity was higher in summer.
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Figure 25: Poste nor mean of the common spatial random effect in logarithm scale for 2007

P fic randorn field

The specific random fields represents the specific information brought by a single process, ie. the
spatial-temporal variability of the sardine distribution induced by the type of data and likelihood
used. Those random effects explain the partof the distribution that was not capmured by interce pts,
the distance from the coast and the shared random field. We chose to focus on 2017 which
correspond to a low value of presence intercept and a high value of fishery intercept.

The random field associated to the Binomial likelihood being informed by survey data only, the
effect was null in summer. In spring, there was a high variability but the model predicted a positive
effect in the offshore and southern parts of the BoB (Figure 26). This effect was not displayed by
the shared random field. The addition of the specific random field allows to reconstruct the sardine
distribution observed during the PELGAS 2017 survey, where sardines were observed near the
coast, near the shelf break and in South Biscay in the BoB. In fall, the specific random field
highlighted density hotspots near the coast, in central Biscay {(~ 3°W / 46.5°N) and in the southern
tip of the Bay, that were present in survey data, but not in the shared random field { Figure 23).
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Figure 26: Poste mor mean of the spaital random effect on the presence in 2017

The random field associated to the LogMormal likelihood was informed by sarvey data only,
therefore the effect was null in summer (Figure 27). In spring, the presence and intensity random
fields did not show the same patterns (Figure 27) The intensity random fields highlighted finer
scale patches in southern coastal BoB and secondary near the shelf break, where sardine density
was higher. Similar density patches can be observed in survey data.

In fall, a large part of the specific random field was null {zero biomass). It revealed 2 areas (in the
middle and in the south of the study area) of negative values (Figure 27), corresponding to the
highly positive areas as in the specific presence random fieldh. Low biomass values were jence
associated to high density of presence in fall 2017

™Y

Figure 27: Poste mor mean of the spatial random effect on the mtensity in 20017
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The random field associated to the Poisson Process likelihood was informed by the commercial
fisheries data. In spring, the northern half of the BoB showed positive values and the south negative
ones (Figure 28). The was an important area of positive in the middle of the sudy area. In summer,
the positive values were coastal with a hotspot in front of the Gironde estuary { Fgure 28) The
offshore and southern part of the BoB showed lower probability of fishing presence. In fall, fishing
hotspots were located along the Landes coast, South of Arcachon, in central BoB, South to Yeu
island, and in Southern Brittany (Figure 28). The fishing activity was more diffuse, with the same
Southern positive area as in the shared random field (Figure 25).
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Figure 28: Posterior mean of the spatial random e ffect on the fishery presence in 2017

The value of the random effect fell between 1 and -00.25. The global fishing presence intercept in
2017 was very high (1,5) (Figure 9). The spatio-temporal variability represented by the random
field was then lower than the global fishing intensity represented by the global interce pt

Mhdel nredic

The predictions associated to the Binomial likelihood represent the probability of presence of
sardines. In spring 2017, the predicted sardine presence map globally resembled the presence
specific random field (Figure 26), but was more patchy (Figure 29). In fact, the variability of the
presence random field was -15 to 15 {in log scale) (Figure 26) and only -5 to 5 in the case of the
common random field (Figure 253). In fall, the sardine presence predictions map was less
continuous, with well defined patches of sardine presence in centre BoB near and extreme MNorth
and South coastal areas and absence else where (Figure 29). The map resembled the presence
specific random field ( Figure 26, with sharper contours. The specific random field hence drove the



probability of presence prediction map for spring and fall. In summer, the only information was the
shared random field which the drove the predicted distribution of sardine presence (Figure 29).
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Figure 29: Probability of presence of sardines in 2017

The prediction associated to the Log Mormal likelihood re presents the intensity, or density of sardine
in areas where they are present (Figure 30). Fatterns of predicted intensity maps were similar to
intensity specific random fields ones in spring and fall. Predicted intensities were however globally
shifted relatively to specific random fields values, due to the addition of the seasonal intercept. In
summer, the predicted intensity map was equal to the common random field, as no scientific survey
data were available in this season (Figure 30).
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Figure 30: Intensity of sardines in 2017 in logarithm scale
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The prediction associated to the Poisson point process likelihood re presents the density of positive
catches by commercial fishermen. This density of presence distribution was very close to the
distribution given by the common random field { Figure 31). The fishing random field had values
close to 0 (Figure 28). Its influence was very low compared to the common random field (Figure
253). 5o positive fishing operations were globally predicted to take place near the coast, with more
activity in spring, except in the southern BoB in fall where a hotspot of fishing operations was
predicted.

e = =

Figure 31: Density of presence of fished sardines in 2017 in logarithm scale
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Appendix 8: Prediction of probabilily of sardine presence for all the year
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Appendix 10: Prediction of sardine fishery intensity for all the vear
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