Characterization of Bay of Biscay sound scattering layers using broadband acoustics, nets and video

Arthur Blanluet

PhD student at IFREMER, Ecology and Modeling for Halieutics (EMH)

1996 2003012

Mathieu Doray, Laurent Berger, Jean-Baptiste Romagnan, Naig Le Bouffant, Sigrid Lehuta and Pierre Petitgas

24/03/2018

Context: Ecosystemic approach

 Raising consideration for an integrated evaluation of ecosystems

• Objective of the DCSMM (UE Marine Strategy Framework Directive)

• For the pelagic environment, a survey : PELGAS

Context : The PELGAS survey

- PELagic GAScogne
- Evaluation of the chemical and physical environment
- Evaluation of all the ecosystem (from plankton to apex predator)
- Use of acoustic tools to determinate the abundance of small pelagic species:
 - Anchovy
 - Sardine

— ...

• Sv = *Backscattering Strength Volume, i.e.* the acoustic density

• Sv = *Backscattering Strength Volume, i.e.* the acoustic density

• Sv = *Backscattering Strength Volume, i.e.* the acoustic density

- Acoustic developed for fish detection
- Any variation of density will scattered the incident wave

- Acoustic developed for fish detection
- Any variation of density will scattered the incident wave
- Possibility of detection of a broad variety of organism with the appropriate thresholds and frequencies

Scattering of marine organisms

3 broad categories of targets:

• Fluid Like (FL) : copepods, gelatinous organisms, euphausiids...

=> Characterized by a density close to the water

Scattering of marine organisms

3 broad categories of targets:

- Fluid Like (FL) : copepods, gelatinous organisms, euphausiids...
- => Characterized by a density close to the water

Elastic Shell (ES) : mainly pteropods...
=> Characterized by a solid shell, that can handle shear wave

Scattering of marine organisms

3 broad categories of targets:

- Fluid Like (FL) : copepods, gelatinous organisms, euphausiids...
- => Characterized by a density close to the water

Elastic Shell (ES) : mainly pteropods...
=> Characterized by a solid shell, that can handle shear wave

• Gaz Bearing (GB) : fish (adult, juveniles or larvae), siphonophores...

=> Characterized by a gas inclusion, with an important density contrast with water

Models representations

¹²

Narrow Band (NB) acoustic

Wide Band (WB) acoustic

Sound Scattering Layers (SSLs)

- Layers of zooplanktonic and micronektonic organisms
- Observed in a great variety of ecosystems

Micronekton SSLs

- Layers of zooplanktonic and micronektonic organisms
- Observed in a great variety of ecosystems
 - Common and very dense in the Bay of Biscay
- Acoustic response dominate by GB organisms
- The « blue noise » of *Ballon et al* (2011)
- Generally bad relationship between acoustic scattering and biological sampling

- Questions
 - Which organisms dominate the Bay of Biscay SSLs?
 - Advantages of Wide Band (WB) acoustic for SSLs characterization?

- Questions
 - Which organisms dominate the Bay of Biscay SSLs ?
 - Advantages of Wide Band (WB) acoustic for SSLs characterization?

Sampling strategy

Acoustic and biological sampling on two contrasted zones in north Bay of Biscay

- Questions
 - Which organisms dominate the Bay of Biscay SSLs ?
 - Advantages of Wide Band (WB) acoustic for SSLs characterization?

Sampling strategy

Acoustic and biological sampling on two contrasted zones in north Bay of Biscay

Methods

Forward approach: Comparison between modeled backscattering (Sv(f)) derived of sampled organisms and measured backscattering averaged over the same area

- Questions
 - Which organisms dominate the Bay of Biscay SSLs ?
 - Advantages of Wide Band (WB) acoustic for SSLs characterization?

Sampling strategy

Acoustic and biological sampling on two contrasted zones in north Bay of Biscay

Methods

Forward approach: Comparison between modeled backscattering (Sv(f)) derived of sampled organisms and measured backscattering averaged over the same area

Biological sampling

Biological samples to acoustic model

- GB organisms
 - Swimbladdered fish
 - Siphonophores

- FL organisms
 - Copepods
 - Ratio L/w = 2.55

- Euphausiids
 - Ratio L/w = 5.5

 ES organisms
Limacina 24/10/2017

Acoustical sampling

Samplers		Transducer	Signal	Bandwidth (kHz)
		ES18-11	CW	18
		ES38B	CW	38
		ES70-7C	FM	47-90
		ES120-7C	FM	95-160
		ES200-7C	FM	180-240
		ES333-7C	FM	280-420
Samples processing		Spectral analysis: • Resolution in frequency: 0.5 kHz • Range resolution: 1 m Echo-integration		

- Questions
 - Which organisms dominate the Bay of Biscay SSLs ?
 - Advantages of Wide Band (WB) acoustic for SSLs characterization?

Sampling strategy

Acoustic and biological sampling on two contrasted zones in north Bay of Biscay

Methods

Forward approach: Comparison between modeled backscattering (Sv(f)) derived of sampled organisms and measured backscattering averaged over the same area

Forward approach: modeled Sv(f)

Forward approach: modeled Sv(f)

- Organisms backscattering modeling
- *
- 216 1m
- ES organisms: Stanton dense fluid sphere high pass model (Stanton et al, 1998)

GB organisms: Modified Ye model (Ye, 1997)

FL organisms: DWBA model (Chu et al, 1993)

Forward approach: modeled Sv(f)

- Organisms backscattering modeling
- Ma

- ES organisms: Stanton dense fluid sphere high pass model (*Stanton et al, 1998*)
- FL organisms: DWBA model (Chu et al, 1993)

GB organisms: Modified Ye model (Ye, 1997)

- Model uncertainty analysis
 - 1000 simulations with each parameter randomly drawn in distribution law based on literature value
 - Construction of confidence interval (90 %) based on these simulations

Forward approach: measured Sv(f)

22/03/2018

Continental shelf daytime surface layer

Slope nighttime surface layers

Modeled Sv(f)

PhD - Blanluet

Modeled Sv(f) compare to measured Sv(f)

22/03/2018

Zone 1

Zone 2

22/03/2018

PhD - Blanluet

SSLs dominant scatterers

- GB organisms
 - Dominate the SSLs at low frequencies
 - Hard to sample: mobile and fragile organisms

- Physonect siphonophores: potential major backscatterers of Biscay shelf SSLs in springtime
 - First evidence of their contribution to Bay of Biscay SSLs
 - Importance of imagery and video for their sampling
- Other organisms (Pteropods, euphausiids copepods)
 - Contribute to SSL backscattering at higher frequencies
 - Dramatic densities of pteropods

Further: large scale clustering

- Questions
 - Variability of SSLs backscattering spectrum in the Bay of Biscay
 - Dominance of Resonant layers?

Sampling strategy

- Echo-integration of good qualities opportunistic WB data acquired in side of PELGAS survey
- Principally night data

Methods

- Clustering (Kmean) on each area, extraction of clusters spectrum
- Comparison between clusters

Thank you for your attention!

arthur.blanluet@ifremer.fr Finishing in January 2019

22/03/2018

- Blanluet

Classification approach

