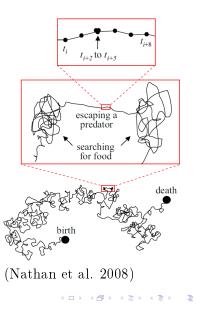
Spatial behavior analysis of fishers by means of trajectory data: stories from faraway seas

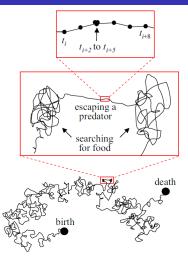
Rocío Joo

Amédée

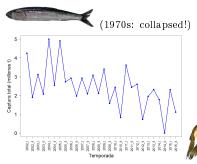
April 6, 2017

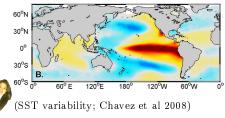
Behavior \leftarrow expressed through movement




Behavior \leftarrow expressed through movement

- Behavior ← expressed through movement
- Movement path → behavioral units


- Behavior ← expressed through movement
- Movement path → behavioral units
- What internal and external factors condition individuals' behavior?
- Multiple scales


How to decompose trajectories in sequences of behavioral mode units?

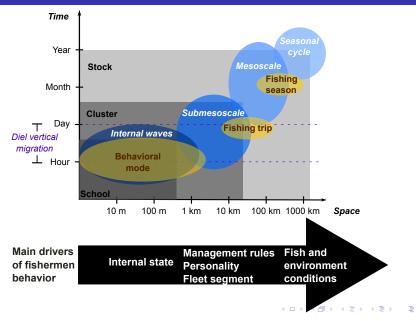
Field: Northern Humboldt Current System

- Available trajectories
- Data on main ecosystem components (CHL, SST, fish...)
 - World's largest monospecific fishery

• Intense regional climatic variability at multiple spatio-temporal scales (seasonal, interannual, multidecadal,...)

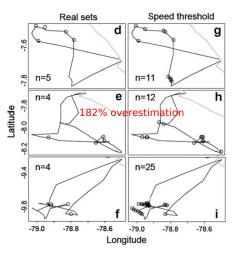
A fisher track and its behavioral modes

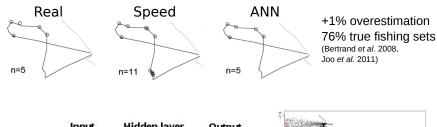
And a second second


A fisher track and its behavioral modes

tracks	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
obs (post)	132	109	356	193	265	309	155	127	242	182
$vms (10^3)$	28.8	26.2	44.4	30.8	43.6	41.5	31.0	30.6	36.1	39.6

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 のQC

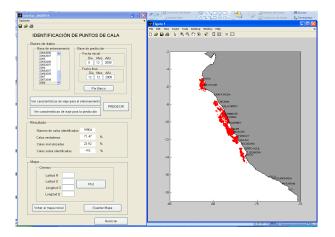

Fisher movement ecology


• Speed thresholds

- (Rijnsdorp et al. 1998, Dinmore et al. 2003, Deng et al. 2005, Murawski et al. 2005, Eastwood et al. 2007, Piet et al. 2007, Walter et al. 2007, Witt & Godley 2007, Fock 2008, Mullowney & Dawe 2009, Piet & Quirijns 2009, Lee et al. 2010, ...)
- Problems: false positives and overestimation! (Palmer

& Wigley 2009, Bertrand *et al.* 2008)

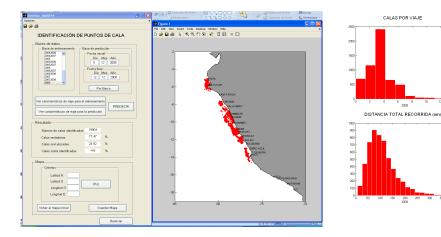
• VMS + observers data (2000-2007)



< □ > < @ > < 클 > < 클 > 클 · 의익증 11/37

-78.0

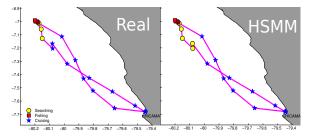
Graphic interface



 $\mathrm{Matlab} \longrightarrow \mathrm{R}$

Graphic interface

Matlab $\longrightarrow R$



(packages: fenix, VMSkit_SISESATools)

Behavior within trips: all modes

Fishing, searching and cruising segments

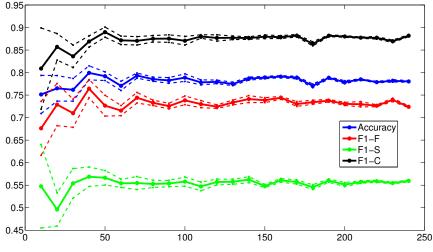
Fishing 81% Searching 58% Cruising 87% Global 79% (Joo *et al.* 2013)

< ロト < 同ト < ヨト < ヨト

13/37

• VMS + observers data (2000-2009)

Model	Markovian		Discriminative					
model	HSMM	HMM	ANN	SVM	RF	PDF		
	sp,	sp,	sp,	sp,	sp,	sp,		
Set of	Δsp_{+1}	Δsp_{+1}	$\Delta sp_{-1},$	$\Delta sp_{-1},$	$\Delta sp_{-1},$	$\Delta sp_{-1},$		
variables			Δsp_{+1}	Δsp_{+1}	$\Delta sp_{+1},$	$\Delta sp_{+1},$		
					$\theta, \Delta \theta_{+1}$	$\Delta \theta_{+1}$		
Global	80%	79%	79%	79%	76%	76%		
Fishing	86 %	76%	75%	75%	74%	72%		
Searching	60 %	60%	57%	57%	54%	51%		
Cruising	88 %	87%	82%	80%	74%	77%		

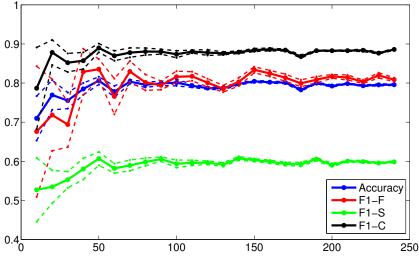

Behavior within trips: all modes

Supervised vs. Non-Supervised (EM) approaches

State	Indicator	NS-HMM	S-HMM	S-HSMM
	Accuracy	68%	78%	80%
F	F1	64%	72%	81%
\mathbf{S}	F1	29%	56%	60%
C	F1	74%	88%	89%

Under NS, Searching state is highly confused with Fishing (30%) and Cruising (40%). Under S, Searching is less confused with Fishing (21%) and Cruising (28%).

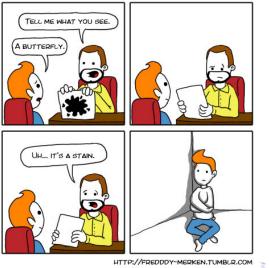
Behavior within trips: sample size effect?



• Mean stabilizes at $n \approx 50$.

• Confidence bands are narrower while sample size increases.

^{16/37}


Behavior within trips: sample size effect?

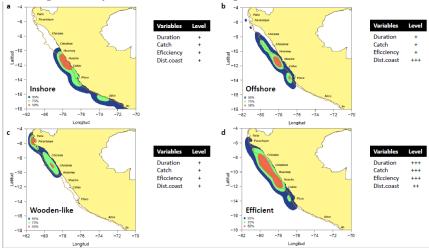
• Mean stabilizes at $n \approx 80$.

• Confidence bands are narrower while sample size increases.

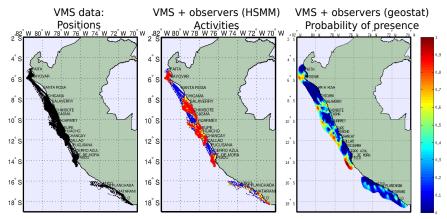
What can they tell us?

HTTP://FREDDDY-MERKEN.TUMBLR.COM

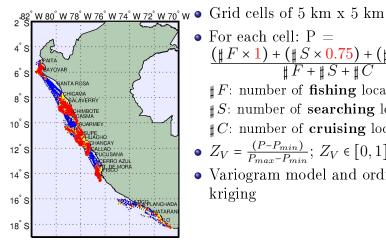
H b


Fishing activity patterns \rightarrow fishing tactics?

- Observers data (2005-2014)
 - 15067 fishing sets
 - 359 vessels
- Variables
 - Duration
 - Catch
 - "Efficiency" = Catch / Fish-hold capacity
 - Distance to shelf break
 - Distance to coast
 - Location (lon,lat)
- Exploratory univariate and multivariate analyses



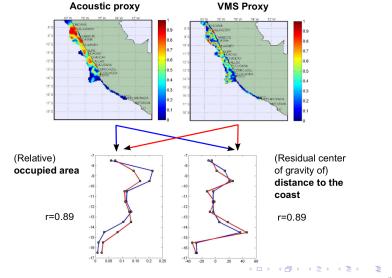
Fishing activity patterns \rightarrow fishing tactics?


* 1 & 2 related to el Niño / la Niña
* cluster sizes: 32%, 31%, 27%, 10%.

Spatial behavior as a proxy of fish presence?

1) Build VMS-based presence proxy

2) Compare it with acoustic-based presence proxy from same period

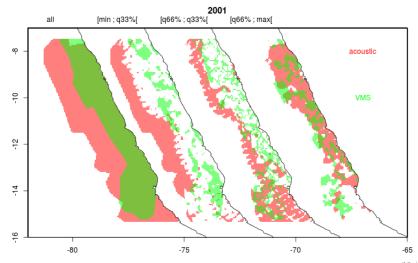


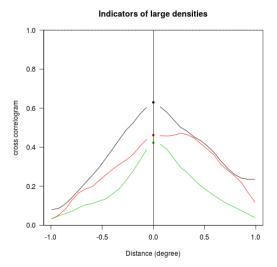
• For each cell: P = $(\sharp F \times 1) + (\sharp S \times 0.75) + (\sharp C \times 0.3)$ #F + #S + #C $\sharp F$: number of **fishing** locations; # S: number of searching locations; $\sharp C$: number of **cruising** locations • $Z_V = \frac{(P-P_{min})}{P_{max}-P_{min}}; Z_V \in [0,1]$ • Variogram model and ordinary kriging

< ロト < 同ト < ヨト < ヨト

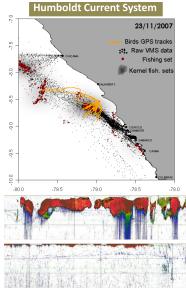
Similar spatial patterns?

^{23/37}


Two sides of the same coin?


Two sides of the same coin? Or not?

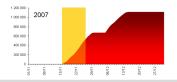
Differences in sampling effort



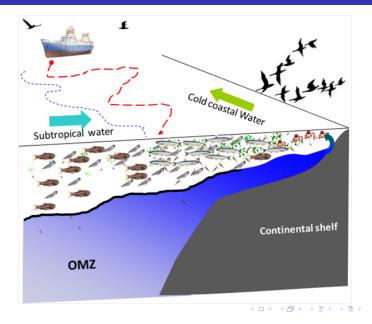

```
26/37
```


- 2001: > 60% coherence between dense VMS and acoustic zones.
- 2008 and 2009: > 40% coherence.

to be continued...

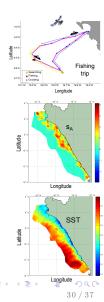

Bertrand et al. (2012) JAE

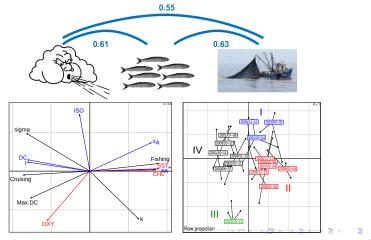
Tracking at the opening of fishing season

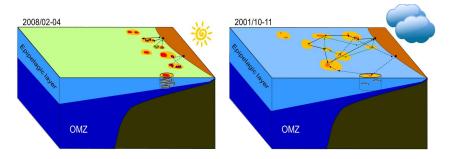

Seabird foraging effort increase day after day, seabirds forage farther from vessels

Mixed effect models: Main effect from the local depletion generated by the fishery removals

Seabird needs: ~ 200 t.d ^1 Fishery removals: ~ 50 000 t.d ^1


Competition seabirds / fishery Localized depletions


Ecosystem conditioning fisher spatial behavior?


- Fishermen:
 - [800, 16000] trips per season: fishing, searching, cruising, duration, distance, maximum distance to coast, diffusion
- Anchovy:
 - 1 value per season: global and local biomass, spatial occupation, distance to coast
- Environment:
 - weekly/monthly data: SST, CHL, oxycline

Challenges: **data** (nature & resolution) Strategy: averaging, grouping, multivariate exploration

- Associations \rightarrow environment and anchovy condition fisher behavior
- Stronger associations for direct links

- Warm, productivity, superficial oxycline
- Abundant, concentrated, coastal
- Coastal, fishing, diffusive

• Cold, low productivity, deep oxycline

- Scarce, spare, far
- Far, cruising, low diffusion

Did small-scale fishers change strategies?

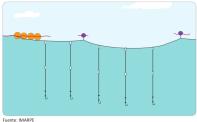


Figura 03-04 - Espinel de superficie

- Drifting longline
- \bullet \sim 10 tonnes

Foto 03-11 - Cortina costera

- Coastal gillnet
- ~ 2 tonnes

Did small-scale fishers change strategies?

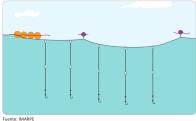
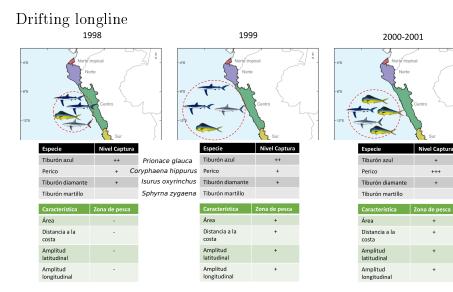


Figura 03-04 - Espinel de superficie

- Drifting longline
- ~ 10 tonnes

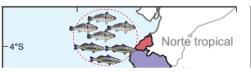

Foto 03-11 - Cortina costera

- Coastal gillnet
- ~ 2 tonnes
- Landing declarations (1997-2001)
- Following vessels (~ 10 per gear/region)
- Fishing area and species composition
- Descriptive stats, spatial density kernels • =

э 34/37

+++

+


+

÷

Coastal gillnet

1997-2000

Característica	Zona de pesca
Área	+
Distancia a la costa	
Amplitud latitudinal	+
Amplitud longitudinal	+

Paralonchurus peruanus Cynoscion analis

Caulolatilus affinis

Especie	Nivel Captura
Сосо	-
Cachema	-
Otros	-
Peje blanco	+++

Característica	Zona de pesca
Área	+
Distancia a la costa	+
Amplitud latitudinal	+
Amplitud longitudinal	+

Collective behavior:

Collective behavior:

If there's time for a teaser...