

FRANCE vs ENGLAND:

match of observer data. What does it tell us about fishing selectivity at the community scale?

Laurence Fauconnet PhD student - Ifremer Nantes

Amédée – Rennes – 27 mars 2014

PhD supervisor: Marie-Joëlle Rochet, Verena Trenkel CEFAS supervisor: Tom Catchpole

Outline

- 1. France VS England: match of observer data
- 2. Objectives: what can it tell us on fishing selectivity at the community level?
- 3. Example in the Bay of Biscay

1. France VS England: match of observer data

A. Comparison of the English and French observer programmes: Can we combine data? What are the assumptions?

B. How to combine the English and French observer data?

A. Comparison of observer programmes

Main differences: sampling plan

Sampling plan		
Technical stratification	Groups of gear type and vessel size	Groups of métiers level 5 DCF
Observer effort allocation (no of trips)	Given no of days converted to no of trips	Compromise precision - regulations - resources

Vessel list			
Stratification	Stratification 1 per quarter		
Vessel allocation	1 vessel per strata	1 vessel can be in several strata	

Main differences: contacts with fishers

Contact monitoring			
Selection of vessel	Random Opportunisti		
Financial indemnification	Yes	No	
Possible to use for enforcement	r Yes No		
Feedback to fishers	No, only if asked after trip	After trip, quarterly + annually	

Main differences: data

Data collected onboard			
Target species	Trip level	Haul level	
Sampling coverage	Between 70 and 75% of fishing operations	Between 35 and 50% of fishing operations	
Non-sampled fishing operations	No data	Landings: species, number, weight	
Sampled fishing operations	Landings and discards: numbers, volumes and lengths	Landings and discards: numbers, weights and lengths	
Biological samples	Otholiths + maturity on discards of listed commercial species	None	

Main differences: data quality

Database			
Species 3 letters codes		Scientific names	
Quality checks	Quality checksNo procedureSeveral ong		

Observers			
Type of contract	Mainly staff of institute	Mainly contractants	
Staff turnover	Low	High	
Training 6+ weeks		2 weeks	
Quality control trips	Yes	No	

B. How to combine both datasets?

- → Formating under **common format** (COST)
- → For English data, numbers at length to be converted in weight using length-weight relationships
- → For French data, convert target species from haul to trip level to compare with English data
- → Check for uniformity in species identification and grouping when necessary ; check for uniformity of measurement types and conversion when necessary

Under progress...

2. Objectives

In the English Channel,

i. What are the total fishing pressures at the community scale?

Total catch = landings + **DISCARDS All species** (fish + commercial invertebrates) By a **combination of fishing gears** deployed in an area

ii. How to characterize /measure the fishing selectivity?

Selectivity: a matter of reference

Millar & Fryer, 1999 => 3 definitions of size selection <u>each differing in the</u> population being selected from:

- The contact-selection curve is the probability that a fish of length / is captured given that it contacted the gear.
- The available-selection curve is the probability that a fish of length / is captured given that it was available to (but possibly avoided) the gear.

The population-selection curve is the probability that a fish of length / from the population is captured.

Size selection

Different extents

Three perspectives

- Ecosystem = probability of catching individuals of length / of one species s (population) or all species (community) by all gears deployed in a given area
- Technology = probability of catching individuals of length / of one species s by a gear, in the surrounding environment of the gear (available) or once it contacted the gear (contact)
- Utilization = decision of keeping and landing or discarding the catch once onboard

Scale	Ecosystem perspective	Technology perspective	Utilization perspective
Organi- sation	ecosystem	fishing operation	fishing sector
Spatial	region (10 ³ – 10 ⁶ km ²)	swept/soak area (10 ⁻³ - 10 ⁻¹ km ²)	local to global
Temporal	decade	hour – day	week – month

More or less selective? **Depend on focus**

avoid what is not suitable to land

Years

3. Example in the Bay of Biscay

LOCAL scale

Comparison of selectivity:

- Between gears
- Between sites

Selectivity metrics

Focus	Туре	Metric	Description	
What is extracted from community	0	Richness (S)	Number of species	
	Species	Evenness (E _{1/D})	Abundance distribution across species (Simpson)	
What is extracted from community	Length	Mean length (Ē)	Typical length of individuals in the catch	
		Length range width (ΔL)	Interpercentile range 5-95% of length structure	
What is used	Utiliza-	Discard weight ratio (DWR)	Proportion of the catch unused	
from tion catch	Discard number ratio (DNR)	Comp DWR - are discards smaller than landings?		

Standardisation

across dears

Gear	South	North	r hau	300
Longlines (LL)	5	-	led .	
Gillnets (GN)	170	36	f ind	- 2000
Trammel nets (TN)	110	168	0 0	
Pelagic trawls (PT)	1	14	ian r	<u>6</u> –
Bottom trawls (BT)	-	62	Med	

=> Rarefaction curves

→ Selectivity metrics

- A few samples are enough to estimate length and utilization metrics
- Length and utilization metrics more sensitive to gear than species metrics

\rightarrow Gear comparison

Significant differences in selectivity between gears Passive vs active not the gear characteristic that influences selectivity the most

\rightarrow Site comparison

Differences in selectivity between sites, especially in length

→ Depend on focus...

- Apply to regional scale in the English Channel
- → More precise stratification
 - Quarter
 - Gear + target species

- → Add metrics to better characterize extraction from ecosystem, in trophic chain for example
- → Raising to the fleet level to get the whole pressures

Ministère de l'Écologie, de l'Énergie, du Développement durable et de la Mer All observers and fishers who participate in both observer programmes

Any questions ?

Contact: laurence.fauconnet@ifremer.fr