Laurence Fauconnet PhD student - Ifremer Nantes

Amédée - Rennes - 27 mars 2014

PhD supervisor: Marie-Joëlle Rochet, Verena Trenkel CEFAS supervisor: Tom Catchpole

Outline

1. France VS England: match of observer data
2. Objectives: what can it tell us on fishing selectivity at the community level?
3. Example in the Bay of Biscay

1. France VS England: match of observer data

A. Comparison of the English and French observer programmes: Can we combine data? What are
 the assumptions?
B. How to combine the English and French observer data?

(8)
 A. Comparison of observer programmes
 MRANCE

Main differences: sampling plan

Sampling plan		
Technical stratification	Groups of gear type and vessel size	Groups of métiers level 5 DCF
Observer effort allocation (no of trips)	Given no of days converted to no of trips	Compromise precision - regulations - resources

Vessel list	1	
Stratification	1 per quarter	1 per year
Vessel allocation	1 vessel per strata	1 vessel can be in several strata

Main differences: contacts with fishers

Contact monitoring	Random	Opportunistic
Selection of vessel	Yes	No
Financial indemnification	Yes	No
Possible to use for enforcement	No, only if asked after trip	After trip, quarterly + annually
Feedback to fishers		

Main differences:

 data| Data collected
 onboard | Trip level | Haul level |
| :---: | :---: | :---: |
| Target species | No data | Landings: species,
 number, weight |
| Sampling coverage | Between 70 and 75% of
 fishing operations | Between 35 and 50\% of
 fishing operations |
| Non-sampled
 fishing operations | Landings and discards:
 operations
 numbers, volumes and
 lengths | Landings and discards:
 numbers, weights and
 lengths |
| Biological samples | Otholiths + maturity on
 discards of listed
 commercial species | None |

Main differences: data quality

Database		
Species	3 letters codes	Scientific names
Quality checks	No procedure	Several ongoing

Observers		
Type of contract	Mainly staff of institute	Mainly contractants
Staff turnover	Low	High
Training	6+ weeks	2 weeks
Quality control trips	Yes	No

B. How to combine both datasets?

\rightarrow Formating under common format (COST)
\rightarrow For English data, numbers at length to be converted in weight using length-weight relationships
\rightarrow For French data, convert target species from haul to trip level to compare with English data
\rightarrow Check for uniformity in species identification and grouping when necessary ; check for uniformity of measurement types and conversion when necessary

Under progress...

2. Objectives

In the English Channel,
i. What are the total fishing pressures at the community scale?

Total catch = landings + DISCARDS
All species (fish + commercial invertebrates)
By a combination of fishing gears deployed in an area
ii. How to characterize /measure the fishing selectivity?

Selectivity: a matter of reference

Millar \& Fryer, 1999 => 3 definitions of size selection each differing in the population being selected from:
\rightarrow The contact-selection curve is the probability that a fish of length I is captured given that it contacted the gear.
\rightarrow The available-selection curve is the probability that a fish of length l is captured given that it was available to (but possibly avoided) the gear.

\rightarrow The population-selection curve is the probability that a fish of length / from the population is captured.

Size selection

Different extents

Three perspectives

\rightarrow Ecosystem = probability of catching individuals of length / of one species s (population) or all species (community) by all gears deployed in a given area
\rightarrow Technology $=$ probability of catching individuals of length / of one species s by a gear, in the surrounding environment of the gear (available) or once it contacted the gear (contact)
\rightarrow Utilization = decision of keeping and landing or discarding the catch once onboard

Scale	Ecosystem perspective	Technology perspective	Utilization perspective
Organi- sation	ecosystem	fishing operation	fishing sector
Spatial	region $\left(10^{3}-10^{6} \mathrm{~km}^{2}\right)$	swept/soak area $\left(10^{-3}-10^{-1} \mathrm{~km}^{2}\right)$	local to global
Temporal	decade	hour - day	week - month

More or less selective? Depend on focus

Targeting efficiency:
\# match the catch with the target
— avoid bycatch

Extraction from community:

Ψ achieve a dominated catch
— avoid a diverse catch

Optimization of utilization:

\& match the landings with the catch

- avoid what is not suitable to land

3. Example

in the Bay of Biscay

LOCAL scale

Comparison of selectivity:

- Between gears
- Between sites

Selectivity metrics

Focus	Type	Metric	Description
What is extracted from community	Species	Richness (S)	Number of species
		Evenness ($\mathrm{E}_{1 / \mathrm{D}}$)	Abundance distribution across species (Simpson)

What is extracted from community	Length	Mean length (̄)	Typical length of individuals in the catch
		Interpercentile range 5-95\% of length structure	

What is	used from catch	Utiliza- tion	Discard weight ratio (DWR)

Standardisation across gears

Gear	South	North
Longlines (LL)	5	-
Gillnets (GN)	170	36
Trammel nets (TN)	110	168
Pelagic trawls (PT)	1	14
Bottom trawls (BT)	-	62

=> Rarefaction curves

Gear / site effects

Metric	\% variance gear	\% variance site
Richness	69	8
Evenness	52	2
Mean length	92	2
Length range width	76	15
Discard weight ratio	83	7
Discard number ratio	90	0.2

between gears
between sites

Conclusions

\rightarrow Selectivity metrics
A few samples are enough to estimate length and utilization metrics
Length and utilization metrics more sensitive to gear than species metrics
\rightarrow Gear comparison
Significant differences in selectivity between gears
Passive vs active not the gear characteristic that influences selectivity the most
\rightarrow Site comparison
Differences in selectivity between sites, especially in length
\rightarrow Depend on focus...

Perspectives

\rightarrow Apply to regional scale in the English Channel
\rightarrow More precise stratification

- Quarter
- Gear + target species

\rightarrow Add metrics to better characterize extraction from ecosystem, in trophic chain for example
\rightarrow Raising to the fleet level to get the whole pressures

Acknowledgements

Réglon
 PAYS DE LA LOIRE

de l'Énergie,
du Développement
durable
et de la Me

Ifremer

All observers and fishers who participate in both observer programmes

Contact: laurence.fauconnet@ifremer.fr

