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Inferring behavior from traking dataInferring behavior from traking data
Learning individual behavior along trajetory from movementObservations : positions at regular time stepBehavior : �shing / not �shing, diving / not divingEtatj'erre 3 / 20



Inferring behavior from traking dataSeleting a state spae model
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Inferring behavior from traking data...required assumptions1. Observed positions proess Xt+1 = Dt + Xt + ǫtassuming a pieewise linear path withUnorrelated proess : Vt |(St ) = fV (ΘV ) and Ψt |(St ) = fΨ(ΘΨ)Unorrelated model (Vermard et al 2010, Walker and Bez2010, Joo et al 2013)Correlated proess : V pt+1|(St+1 = i) = ηp,i + µp,iV pt + σp,iǫp,tV rt+1|(St+1 = i) = ηr ,i + µr ,iV rt + σr ,iǫr ,tAutoregressive Model (Gloaguen et al 2014)2. Hidden states proess St+1 = F ((S1, ..., St),MS)Markov Chain : St+1 = F (St ,MS)Semi Markov : (Stk ,Ttk )tk and τtk = Ttk+1 − Ttk
(Stk+1, τtk+1) = F ((St1 ,Tt1 , ...,Stk ,Ttk ),MS ) = F (Stk ,MS)Etatj'erre 7 / 20



Validation data and modelling experimentHigh resolution trajetories with validation dataVessels and birds paths monitored regularly (with a smaller timestep than usual)At eah position, the state (�shing or not for vessels, diving or not forbirds) is observed
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Validation data and modelling experimentHigh resolution trajetories with validation dataLearning from data and models �ttingare models assumptions violated ?are inferred behaviors robust to model assumptions ?are the answers sensitive to observations time step ?Performane of state spae models : experimentDegrading the observations time step,1 we explore
◮ Positions proess : is it orrelated ? PACF analyses (H0 : unorrelated)
◮ State proess : is it Markov ? Residene time analyses (H0 : geometridistribution)2 we estimate model parameters independantly (maximum likelihood)3 we predit the most likely sequene of states using Viterbi algorithmEtatj'erre 9 / 20



Results Positions proessPositions proess : H0 = V unorrelatedPartial autoorrelation of V at lag 1, 2 and 3 for several δtDiving Not Diving
Autoorrelated ?Diving, Not Diving : V , Vp, Vr �rst(or seond) order orrelated

δt : V , Vp, Vr �rst order orrelated whatever δtEtatj'erre 10 / 20



Results Positions proessPositions proess : H0 = V unorrelatedPartial autoorrelation of V at lag 1, 2 and 3 for several δtFishing Not Fishing
Autoorrelated ?Fishing, Not Fishing : V , Vp, Vr �rst (or seond) order orrelationwhatever δt = 15min, 1hEtatj'erre 11 / 20



Results Behavior proessBehavior proess : H0 = Residene time ∼ geometri distribution

number of onseutive positions
δt pval �sh pval steam1s 0.01 0.2812s 0.000 0.000test de χ2 : geometri(p = empiri mean)

Markov ?Diving : not relevant - better should be semi-MarkovNot Diving : MarkovEtatj'erre 12 / 20



Results Behavior proessBehavior proess : H0 = Residene time ∼ geometri distribution

number of onseutive positions
δt pval �sh pval steam15min 0.002 0.0001h 0.000 0.000test de χ2 : geometri(p = empiri mean)

Markov ?Fishing : not relevant - better should be semi-MarkovNot Fishing : MarkovEtatj'erre 13 / 20



Results The most likely sequene of statesFisheries Modelling experimentAssumptions Unorrelated, (V ,Ψ) Autoregressive, (Vp ,Vr )Markov X XSemi-Markov X XSteps of the experiment1 Split the dataset into a learning dataset and a testing dataset2 With the learning dataset : estimate the model parameters
◮ speed and turning angle distributions, orrelations
◮ residene time for transition matrix3 With the remaining dataset :
◮ simulating the most likely sequene of states using the Viterbi algorithm
◮ estimating the performane of the model : onfusion matrixEtatj'erre 14 / 20



Results The most likely sequene of statesThe most likely sequene of states- Unorrelated, (V ,Ψ)Analysis performed using learning dataset for two trawlers operating in theEnglish Channel (5 and 13 trips)For trawler 1 with δt = 15min estimates of
ΘV and ΘΨ

distribssRoseDiagEtatj'erre 15 / 20



Results The most likely sequene of statesThe most likely sequene of states - Unorrelated, (V ,Ψ)For trawler 1 with δt = 15min estimates of MSMarkov
Semi Markov
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Results The most likely sequene of statesThe most likely sequene of states - Unorrelated, (V ,Ψ)Using the Viterbi algorithm with the estimated parameters ΘV , ΘΨ and MSMarkov Semi Markov
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Results The most likely sequene of statesThe most likely sequene of states - summary of the whole experimentUnorrelated Model Autoorrelated Model
Performane of AR model and Drift modelBest �t for vessel 1Robust to Markov assumptionSmall degradation with δtEtatj'erre 18 / 20



ConlusionsConlusionsare models assumptions violated ?
◮ �srt order orrelation rarely taken into aount (�sheries)
◮ Markov only on�rmed for not �shing or not diving stateare inferred behaviors robust to model assumptions ?
◮ Unorrelated and AR models are robust to state proess assumptions
◮ but �tted Θ distributions not satisfatoryare the answers sensitive to observations time step ?
◮ inreasing time step inreases autoorrelation for birds'speed
◮ inreasing time step dereases autoorrelation for vessels'speed
◮ but does not in�uene the performane of AR and unorrelated model
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ConlusionsConlusionsEology - Fisheries : di�erenes ?Time step : a limitation for �shing sequene identi�ation but not forinferring behaviorSpeed is not observed - omputing average speed required assumptionson the path between two positions - monitor instantaneous speedAR model or Drift Model ? the simplest Drift-Markov modelApropriate approah for trajetories with validation dataNext step : what is the in�uene of the learning step on onlusions ?
◮ performane of the autoorrelated model are known to be lower thanthose of the unorrelated
◮ to be ompared with an integrated estimation proedure (like with notobserved behavior)another trak : segmentation of path (using path hrateristis,patterns ...), ontinuous modelEtatj'erre 20 / 20
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